Acoustic emission (AE) has been widely used to the nondestructive evaluation (NDE) and structural health monitoring (SHM) of hoisting machinery recently. Kernel entropy component analysis (KECA) is generally applied to extract the AE features based on its excellent nonlinear ability. However, traditional KECA specifically requires a considerable number of components (e.g. eigenvalues and eigenvectors) to excellently describe the original data, which leads to a reduction in the effect of approximate dimensionality reduction of high-dimensional data, thus causing readily unacceptable condition monitoring result. To overcome this weakness, a novel method named moving window-improved kernel entropy component analysis (MW-IKECA) is proposed in this study for structural condition monitoring of hoisting machinery, which is aimed at extracting more AE feature information and improving the condition identification accuracy. Firstly, a twiddle factor is introduced in the KECA model for the purpose of breaking the restriction that the projection axes originate only from the feature vectors and maximizing the independence between the components. Meanwhile, the moving window local strategy is incorporated into the proposed IKECA to extract more rich and effectiveness AE feature information at different scales. Finally, the Cauchy–Schwarz (CS) statistic is utilized to calculate the similarity between probability density functions and maintain the angular structure of the MW-IKECA feature space for the task of improving the monitoring accuracy and shortening the monitoring time-delay of MW-IKECA. Results of the experimental and practical engineering application validate the effectiveness and superiority of the proposed method in AE-based crane SHM under different working conditions compared with the traditional KECA and some combinatorial methods.