The structure of lead(II) is not well known in aqueous solution. The Hartree–Fock and second order Møller–Plesset levels of theory using the CEP, LANL2, and SDD effective core potentials in combination with their associated basis sets, or with the 6-31G* and 6-31+G* basis sets were used to calculate the energies, structures, and vibrational frequencies of Pb2+(H2O)n, n = 0–9, 18. The lead–oxygen distances and totally symmetric stretching frequency of the aqualead(II) ions from different levels of theory were compared with each other, and with solution measurements where available. The calculations support a hemidirected hexacoordinate structure.