The diffraction problem of hydroelastic waves beneath an ice sheet by multiple bottom-mounted circular cylinders is considered. The elastic thin-plate theory is adopted to model the ice sheet, while the linearized velocity potential theory adopted for the fluid flow. The velocity potential corresponding to each cylinder is expanded into a series of eigenfunctions, and the total potential is expressed as a summation of these expansions over the entire NC number of cylinders. For each cylinder, the Green's second identity is used outside its domain to obtain a set of linear equations. For each different cylinder, the domain used is different. NC cylinders give NC sets of coupled linear equations. Investigations are made for different arrangements of cylinders, piercing through ice sheets. Results for the wave forces on the cylinders with clamped and free conditions of the ice edge are obtained. Physical phenomena corresponding to cylinders arranged in square, in an array, in a double-array and in a staggered double array are discussed.