2012
DOI: 10.1103/physrevlett.108.194101
|View full text |Cite
|
Sign up to set email alerts
|

Hyperbolic Chaos of Turing Patterns

Abstract: We consider time evolution of Turing patterns in an extended system governed by an equation of the Swift-Hohenberg type, where due to an external periodic parameter modulation long-wave and short-wave patterns with length scales related as 1:3 emerge in succession. We show theoretically and demonstrate numerically that the spatial phases of the patterns, being observed stroboscopically, are governed by an expanding circle map, so that the corresponding chaos of Turing patterns is hyperbolic, associated with a … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
11
0
7

Year Published

2013
2013
2020
2020

Publication Types

Select...
8

Relationship

3
5

Authors

Journals

citations
Cited by 12 publications
(19 citation statements)
references
References 17 publications
1
11
0
7
Order By: Relevance
“…With this interpretation, our results demonstrate that an interaction between blinking patterns results in a chaotic relocation of their positions, moreover, this chaos is hyperbolic. A kind of such behavior was reported recently in a model of interacting Turing patterns with different wave numbers [24]. The presented model based on the nonlinear Fokker-Plank equation provides another indication that the above mechanism of the hyperbolic chaos is realizable in quite generic circumstances.…”
Section: Discussionsupporting
confidence: 64%
“…With this interpretation, our results demonstrate that an interaction between blinking patterns results in a chaotic relocation of their positions, moreover, this chaos is hyperbolic. A kind of such behavior was reported recently in a model of interacting Turing patterns with different wave numbers [24]. The presented model based on the nonlinear Fokker-Plank equation provides another indication that the above mechanism of the hyperbolic chaos is realizable in quite generic circumstances.…”
Section: Discussionsupporting
confidence: 64%
“…Replacing the spatial differentiation operator in equation of Ref. [4] with a difference operator, we obtain , ) 1 where u j is dynamical variable related to the j-th spatial cell, k, A, ε are parameters. The quantities d j define the spatial non-homogeniety, the role of which will be explained below.…”
Section: Nonautonomous Lattice System Generating Turing Patternsmentioning
confidence: 99%
“…2 S. P. Kuznetsov ______________________________ CHEBOKSARY, 2-6 JUNE, 2019 ______________________________ the three-dimensional state space, but such attractors can occur in spaces of higher dimension too.Physical examples of systems with attractors of Smale -Williams type can be constructed using oscillators residing in states of excitation and inhibition alternately, while the angular variable has a sense of the oscillator phase [3]. Another approach is based on treatment of patterns arising in an active medium, say, that for Turing structures or standing waves, and the angular variable is a spatial phase [4,5,6]. A disadvantage of the first approach is that it requires, as a rule, a use of rather complex external driving for parameter modulation, combining low-frequency and high-frequency components.…”
mentioning
confidence: 99%
“…Требуемое преобразование фазы в уже известных примерах физически осуществля-ется разными способами. Системы с аттракторами типа Смейла -Вильямса могут иметь различную физическую природу (механическую, химическую, радиофизическую) и пред-ставлять собой связанные осцилляторы, между которыми возмущение передается резонанс-ным и нерезонансным образом [13], кольцевые цепочки осцилляторов, вдоль которых пере-дается возмущение [14], системы параметрических осцилляторов, в которых роль угловой переменной может выполнять соотношение амплитуд осцилляторов [15], распределенные системы, в которых особым образом взаимодействуют пространственные гармоники волно-вых паттернов [16], системы на основе взаимодействующих ансамблей фазовых осцилля-торов с глобальной связью, в которых угловой переменной является аргумент параметра порядка [17].…”
Section: Introductionunclassified