Abstract:Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, nonintrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source and operated in a glow-type regime. The twodimensional distribution of the translational temperature (T t ) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A-X (0, 0) band was used to simulate the rotational temperature (T r ) of the gliding arc discharge whereas the NO A-X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (T v ). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring the instantaneous length of the plasma column, the discharge voltage and the translational temperature, from which the electron temperature (T e ) of the gliding arc discharge was estimated. The uncertainties of the translational, rotational, vibrational and electron temperatures were analyzed. The relations of these four different temperatures (T e >T v >T r >T t ) suggest a high-degree non-equilibrium state of the gliding arc discharge. Phys. 79(5), 2245-2250 (1996). 3. A. Czernichowski, "Gliding arc -applications to engineering and environment control," Pure Appl. Chem.