Human observers are remarkably good at perceiving constant object color across illumination changes. However, there are numerous other factors that can modulate surface appearance, such as aging, bleaching, staining, or soaking. Despite this, we are often able to identify material properties across such transformations. Little is known about how and to what extent we can compensate for the accompanying color transformations. Here we investigated whether humans could reproduce the original color of bleached fabrics. We treated 12 different fabric samples with a commercial bleaching product. Bleaching increased luminance and decreased saturation. We presented photographs of the original and bleached samples on a computer screen and asked observers to match the fabric colors to an adjustable matching disk. Different groups of observers produced matches for original and bleached samples. One group of observers were instructed to match the color of the bleached samples as they were before bleaching (i.e., compensate for the effects of bleaching); another, to accurately match color appearance. Observers did compensate significantly for the effects of bleaching when instructed to do so, but not in the appearance match condition. Results of a second experiment suggest that observers achieve color consistency, at least in part, through a strategy based on local spatial differences within the bleached samples. According to the results of a third experiment, these local spatial differences are likely to be the perceptual image cues that allow participants to determine whether a sample is bleached. When the effect of bleaching was limited or uniformly distributed across a sample's surface, observers were uncertain about the bleaching magnitude and seemed to apply cognitive strategies to achieve color consistency.