“…These are performed using a recently developed hyperspectral light transport model for human skin, henceforth referred to as Hyperspectral Light Impingement on Skin (HyLIoS). 25 This model, capable of predictively simulating both the spectral and spatial distributions of light interacting with the skin tissues, takes into account the detailed layered structure of these tissues and the particle nature of their main light attenuation agents, namely the melanosomes, the organelles encapsulating melanin in an aggregated form. 26 In fact, it employs a first principles simulation approach that incorporates all main light absorbers (keratin, DNA, uranic acid, melanins, hemoglobins, beta-carotene, bilirubin, lipids, and water) and scatterers (cells, collagen fibers, melanosomes, and melanosome complexes) acting within the skin tissues in the ultraviolet (UV) (250 to 400 nm), visible (400 to 700 nm), and near-infrared (NIR) (700 to 2500 nm) domains.…”