Analyses of chemical residues in animal tissue matrices require multistep sample preparation. To simplify this process, a methodology was developed that combines sorbent extraction and solid-matrix time-resolved luminescence (TRL); it was applied to tetracycline screening in milk. Reported here is an effort to extend its application to tissue matrices, illustrated by oxytetracycline (OTC) screening in catfish muscle. Extraction and enrichment are accomplished by immersing small C18 sorbent strips into tissue homogenates for 20 min, followed by a 3 min rinse in water and a 2 min dip in a reagent solution. After desiccation, TRL is measured directly on the sorbent surface. Tissue particulates no longer interfere via attenuation or scattering, rendering centrifugation and filtration unnecessary. The integrated TRL intensity shows a linear dependence on OTC concentration in the 0-8 microg/g range (R2 = 0.9992) with a 0.026 microg/g limit of detection. To screen OTC at 2 microg/g, the U.S. regulatory tolerance level, a threshold is established at x2-3sigma2, where x2 and sigma2 are the mean and standard deviation, respectively, of the TRL signals from 15 samples fortified at 2 microg/g. Among 45 blind samples randomly fortified at 0-4 microg/g, 41 were screened correctly and 4 negative samples were presumed positive. This method has the potential to improve throughput and save assay costs by eliminating acids, organic solvents, centrifugation, and filtration.