In this paper, we prove interior Poincaré and Sobolev inequalities in Euclidean spaces and in Heisenberg groups, in the limiting case where the exterior (resp. Rumin) differential of a differential form is measured in L 1 norm. Unlike for L p , p > 1, the estimates are doomed to fail in top degree. The singular integral estimates are replaced with inequalities which go back to Bourgain-Brezis in Euclidean spaces, and to Chanillo-van Schaftingen in Heisenberg groups.1991 Mathematics Subject Classification. 58A10, 35R03, 26D15, 43A80, 46E35, 35F35.