Purpose: Although cetuximab, an anti-EGF receptor (EGFR) monoclonal antibody, is an effective treatment for patients with KRAS wild-type metastatic colorectal cancer (mCRC), its clinical use is limited by onset of resistance.Experimental Design: We characterized two colorectal cancer models to study the mechanisms of acquired resistance to cetuximab.Results: Following chronic treatment of nude mice bearing cetuximab-sensitive human GEO colon xenografts, cetuximab-resistant GEO (GEO-CR) cells were obtained. In GEO-CR cells, proliferation and survival signals were constitutively active despite EGFR inhibition by cetuximab treatment. Whole gene expression profiling identified a series of genes involved in the hepatocyte growth factor (HGF)-MET-dependent pathways, whichwere upregulated in GEO-CR cells.Furthermore,activated, phosphorylated MET was detected in GEO-CR cells. A second colorectal cancer cell line with acquired resistance to cetuximab was obtained (SW48-CR). Inhibition of MET expression by siRNA restored cetuximab sensitivity in GEO-CR and SW48-CR cells, whereas exogenousactivation ofMETbyHGFstimulationin cetuximab-sensitiveGEOandSW48cells inducedresistance to cetuximab. Treatment of GEO-CR and SW48-CR cells with PHA665752, a selective MET inhibitor, inhibited cell growth, proliferation, and survival signals and impaired cancer cell migration. Overexpression of TGF-a, a specific EGFR ligand, was involved in the acquisition of cetuximab resistance in GEO-CR and SW48-CR cells. In fact, TGF-a overexpression induced the EGFR-MET interaction, with subsequent MET phosphorylation and activation of MET downstream effectors in GEO-CR and SW48-CR cells.Conclusions: These results suggest that overexpression of TGF-a through induction of EGFR-MET interaction contributes to cetuximab resistance in colorectal cancer cells. The combined inhibition of EGFR and MET receptor could represent a strategy for preventing and/or overcoming cetuximab resistance in patients with colorectal cancer.