Smart textiles based on actuator materials are of practical interest, but few types have been commercially exploited. The challenge for researchers has been to bring the concept out of the laboratory by working out how to build these smart materials on an industrial scale and permanently incorporate them into textiles. Smart textiles are considered as the next frontline for electronics. Recent developments in advance technologies have led to the appearance of wearable electronics by fabricating, miniaturizing and embedding flexible conductive materials into textiles. The combination of textiles and smart materials have contributed to the development of new capabilities in fabrics with the potential to change how athletes, patients, soldiers, first responders, and everyday consumers interact with their clothes and other textile products. Actuating textiles in particular, have the potential to provide a breakthrough to the area of smart textiles in many ways. The incorporation of actuating materials in to textiles is a striking approach as a small change in material anisotropy properties can be converted into significant performance enhancements, due to the densely interconnected structures. Herein, the most recent advances in smart materials based on actuating textiles are reviewed. The use of novel emerging twisted synthetic yarns, conducting polymers, hybrid carbon nanotube and spandex yarn actuators, as well as most of the cutting–edge polymeric actuators which are deployed as smart textiles are discussed.