2009
DOI: 10.1063/1.3123168
|View full text |Cite
|
Sign up to set email alerts
|

Ab initio study of the Br(P2)–HBr van der Waals complex

Abstract: This study reports an ab initio characterization of a prereactive van der Waals complex between an open-shell atom Br((2)P) and a closed shell molecule HBr. The three adiabatic potential surfaces 1 (2)A('), 2 (2)A('), and 1 (2)A("), which result from the splitting of degenerate P state of Br are obtained from coupled cluster calculations. The coupling between same-symmetry states is calculated by multireference configuration-interaction method. A transformation to a diabatic representation and inclusion of the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
8
1
5

Year Published

2014
2014
2017
2017

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(15 citation statements)
references
References 43 publications
1
8
1
5
Order By: Relevance
“…1 and 2, the ground state potential energy surface has a relatively deep van der Waals well with a depth of 0.076 eV, corresponding to the linear IÁ Á ÁHI van der Waals complex (C 1v ). We did not find a stable bent IÁ Á ÁHI van der Waals complex on our potential energy surface in contrast with the Br + HBr case [40,49]. Similarly, both the second and third states have linear van der Waals minima but the well depth on the third state is found to comparable to that on the ground state.…”
Section: Theorycontrasting
confidence: 66%
“…1 and 2, the ground state potential energy surface has a relatively deep van der Waals well with a depth of 0.076 eV, corresponding to the linear IÁ Á ÁHI van der Waals complex (C 1v ). We did not find a stable bent IÁ Á ÁHI van der Waals complex on our potential energy surface in contrast with the Br + HBr case [40,49]. Similarly, both the second and third states have linear van der Waals minima but the well depth on the third state is found to comparable to that on the ground state.…”
Section: Theorycontrasting
confidence: 66%
“…[26] Van der Waals (vdW) bonded eigenstates of BrHBr with bent and slightly more stable linear (hydrogen-bonded) geometries have also been calculated on a PES that includes spin-orbit coupling (SOC), determined in the vicinity of these vdW potential minima (though not at the potential barrier). [27] The experimental photodetachment studies clearly demonstrate that the BrHBr and BrDBr radicals are not vibrationally bound. [20][21][22] An earlier claim [16] of vibrational bonding in BrHBr is thus incorrect, due to potential barriers assumed in the semiempirical PESs used then that were too low, compared to later quantum chemical calculations, [26] also shown herein.…”
mentioning
confidence: 90%
“…Die Ergebnisse für die vdW-Minima werden auch mit den Rechnungen von Toboła et al [27] verglichen, welche allerdings auf die Bereiche der PES in der Nähe der vdW-Minima beschränkt sind. Die Ergebnisse für die vdW-Minima werden auch mit den Rechnungen von Toboła et al [27] verglichen, welche allerdings auf die Bereiche der PES in der Nähe der vdW-Minima beschränkt sind.…”
Section: Methodsunclassified
“…[2,3] Allerdings ist Deuterium nur doppelt so schwer wie das Wasserstoffatom; Tritium ist dreimal so schwer wie das Wasserstoffatom, weil es aber gefährlich radioaktiv ist, wurde es nur eingeschränkt angewendet. [26] Außerdem wurden auf einer Potentialfläche unter Berücksichtigung der Spin-Bahn-Wechselwirkung (SBW) Van-der-Waals(vdW)-gebundene Eigenzustände von BrHBr mit gewinkelten sowie mit geringfügig stabileren (Wasserstoffbrücken-artigen) linearen Geometrien berechnet, [27] und zwar jeweils in der Nähe der vdW-Minima der Potentialfläche (also ohne Berechnung der Potentialbarriere). [7][8][9] Hier stellen wir einen neuen Quantenisotopeneffekt vor, bei dem die Substitution von H durch Mu im BrHBr-Radikal eine fundamentale ¾nderung der Art der chemischen Bindung bewirkt.…”
unclassified
See 1 more Smart Citation