SummaryBacterial cell shape is determined by a rigid external cell wall. In most non-coccoid bacteria, this shape is also determined by an internal cytoskeleton formed by the actin homologues MreB and/or Mbl. To gain further insights into the topological control of cell wall synthesis in bacteria, we have constructed green fluorescent protein (GFP) fusions to all 11 penicillinbinding proteins (PBPs) expressed during vegetative growth of Bacillus subtilis . The localization of these fusions was studied in a wild-type background as well as in strains deficient in FtsZ, MreB or Mbl. PBP3 and PBP4a localized specifically to the lateral wall, in distinct foci, whereas PBP1 and PBP2b localized specifically to the septum. All other PBPs localized to both the septum and the lateral cell wall, sometimes with irregular distribution along the lateral wall or a preference for the septum. This suggests that cell wall synthesis is not dispersed but occurs at specific places along the lateral cell wall. The results implicate PBP3, PBP5 and PBP4a, and possibly PBP4, in lateral wall growth. Localization of PBPs to the septum was found to be dependent on FtsZ, but the GFP-PBP fluorescence patterns were not detectably altered in the absence of MreB or Mbl.