Cell division in rod-shaped bacteria is initiated by formation of a ring of the tubulin-like protein FtsZ at mid-cell. Division site selection is controlled by a conserved division inhibitor MinCD, which prevents aberrant division at the cell poles. The Bacillus subtilis DivIVA protein controls the topological specificity of MinCD action. Here we show that DivIVA is targeted to division sites late in their assembly, after some MinCD-sensitive step requiring FtsZ and other division proteins has been passed. DivIVA then recruits MinD to the division sites preventing another division from taking place near the newly formed cell poles. Sequestration of MinD to the poles also releases the next mid-cell sites for division. Remarkably, this mechanism of DivIVA action is completely different from that of the equivalent protein MinE of Escherichia coli, even though both systems operate via the same division inhibitor MinCD.
The Bacillus subtilis spoOJ gene is required for accurate chromosome partitioning during growth and sporulation. We have characterized the subcellular localization of Spo0J protein by immunofluorescence and, in living cells, by use of a spoOJ-gfp fusion. We show that the Spo0J protein forms discrete stable foci usually located close to the cell poles. The foci replicate in concert with the initiation of new rounds of DNA replication, after which the daughter foci migrate apart inside the cell. This migration is independent of cell length extension, and presumably serves to direct the daughter chromosomes toward opposite poles of the cell, ready for division. During sporulation, the foci move to the extreme poles of the cell, where they function to position the oriC region of the chromosome ready for polar septation. These observations provide strong evidence for the existence of a dynamic, mitotic-like apparatus responsible for chromosome partitioning in bacteria. The mechanism by which bacterial chromosomes are equipartitioned into daughter cells at division has remained obscure despite decades of study (Hiraga 1993;Wake and Errington 1995). There are several reports of abrupt movement of bacterial nucleoids (Sargent 1974;Hiraga et al. 1990;Begg and Donachie 1991), suggesting the existence of an active partitioning machinery equivalent to the mitotic apparatus of eukaryotes. However, there are some difficulties in interpreting these results and van Helvoort and Woldringh (1994)have shown convincingly that unperturbed nucleoids move apart gradually and continuously during cell growth (van Helvoort and Woldringh 1994). The tendency to assume that the mechanisms of chromosome segregation in bacteria are distinct from those of eukaryotes stems mainly from the absence of obvious structures such as the cytoskeleton and the mitotic spindle. However, this might be attributable in part to the difficulty in resolving such structures in ceils as small and tough as bacteria. Detection of mitotic-like activity is also hampered by the relatively unstructured state of the bacterial nucleoid and, particu-
During sporulation in Bacillus subtilis a small prespore cell is formed by an asymmetric cell division. Pre-spore chromosome partitioning occurs by a specialised mechanism in which septation precedes chromosome movement. We show that the spo0J gene is needed to specify the orientation of the chromosome at the time of polar division and to impose directionality on the subsequent transport of the remainder of the chromosome through the septum. Both phenotypes may arise by disruption of a centromere-like apparatus that anchors the or/C region of the prespore chromosome in the pole of the cell.
Unprecedented developments in stem cell research herald a new era of hope and expectation for novel therapies. However, they also present a major challenge for regulators since safety assessment criteria, designed for conventional agents, are largely inappropriate for cell-based therapies. This article aims to set out the safety issues pertaining to novel stem cell-derived treatments, to identify knowledge gaps that require further research, and to suggest a roadmap for developing safety assessment criteria. It is essential that regulators, pharmaceutical providers, and safety scientists work together to frame new safety guidelines, based on "acceptable risk," so that patients are adequately protected but the safety "bar" is not set so high that exciting new treatments are lost.
Fluorescence microscopic methods have been used to characterize the cell cycle of Bacillus subtilis at four different growth rates. The data obtained have been used to derive models for cell cycle progression. Like that of Escherichia coli, the period required by B. subtilis for chromosome replication at 37°C was found to be fairly constant (although a little longer, at about 55 min), as was the cell mass at initiation of DNA replication. The cell cycle of B. subtilis differed from that ofE. coli in that changes in growth rate affected the average cell length but not the width and also in the relative variability of period between termination of DNA replication and septation. Overall movement of the nucleoid was found to occur smoothly, as in E. coli, but other aspects of nucleoid behavior were consistent with an underlying active partitioning machinery. The models for cell cycle progression in B. subtilis should facilitate the interpretation of data obtained from the recently introduced cytological methods for imaging the assembly and movement of proteins involved in cell cycle dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.