The refuge strategy is used worldwide to delay the evolution of pest resistance to insecticides that are either sprayed or produced by transgenic Bacillus thuringiensis (Bt) crops. This strategy is based on the idea that refuges of host plants where pests are not exposed to an insecticide promote survival of susceptible pests. Despite widespread adoption of this approach, large-scale tests of the refuge strategy have been problematic. Here we tested the refuge strategy with 8 y of data on refuges and resistance to the insecticide pyriproxyfen in 84 populations of the sweetpotato whitefly (Bemisia tabaci) from cotton fields in central Arizona. We found that spatial variation in resistance to pyriproxyfen within each year was not affected by refuges of melons or alfalfa near cotton fields. However, resistance was negatively associated with the area of cotton refuges and positively associated with the area of cotton treated with pyriproxyfen. A statistical model based on the first 4 y of data, incorporating the spatial distribution of cotton treated and not treated with pyriproxyfen, adequately predicted the spatial variation in resistance observed in the last 4 y of the study, confirming that cotton refuges delayed resistance and treated cotton fields accelerated resistance. By providing a systematic assessment of the effectiveness of refuges and the scale of their effects, the spatially explicit approach applied here could be useful for testing and improving the refuge strategy in other crop-pest systems.pesticide resistance | predictive evolutionary models | pest management | resistance management P opulation growth will continue to favor agricultural intensification for decades. Because agricultural intensification is associated with increased pest pressure, pesticides generally help to increase yield (1-3). Although significant progress has been made to reduce reliance on pesticides (4, 5), an increasing number of insects and mites exhibit field-evolved resistance to synthetic pesticides, Bacillus thuringiensis (Bt) sprays, and transgenic Bt crops (6, 7). Negative consequences of resistance include increased pesticide use, disruption of food webs and ecosystem services, increased risk to human health, and loss of profits for farmers and industry (1, 3).One of the main strategies for delaying resistance promotes survival of susceptible pests by providing refuges, which are areas of host plants where pests are not exposed to an insecticide. Theory predicts that refuges will slow the evolution of resistance by reducing the fitness advantage of resistant individuals (7-9). Refuges can also reduce the heritability of resistance when susceptible individuals mate with resistant individuals surviving exposure to an insecticide (7). Empirical support for the refuge strategy was provided by short-term laboratory and greenhouse experiments (10, 11). Although these experiments test the hypothesis that mating between susceptible and resistant individuals delays the evolution of resistance, they do not consider several fact...