Background:Clostridium difficile (C. difficile) is a frequent cause of nosocomial infections. During last few years, the mortality rate of C. difficile infection (CDI) increased in healthcare facilities. This organism has become a major public health concern in developed nations. Because of the increasing incidence of acquired-CDI (CA-CDI) and notable genetic overlap between C. difficile isolates from animals and humans, meat has defined as one of the probable transmission route of C. diffiicle to humans.Objectives:This study was performed to determine the prevalence of toxigenic C. difficile in beef and mutton meats consumed as human food in Isfahan, central part of Iran. Furthermore the polymerase chain reaction (PCR)-ribotyping employed to compare the genetic pattern of positive isolates in meat with clinical ones.Materials and Methods:A total of 200 raw meat samples (81 beef and 119 mutton) were purchased from meat packaging plants. The samples were anaerobically cultured in C. difficile moxalactam norfloxacin (CDMN) broth and plated on selective enrichment medium. The suspicious colonies were recultured on blood agar anaerobically. All C. difficile isolates identified by morphological and biochemical testing were screened by PCR for the presence of genes encoding the triose phosphate isomerase (tpi), toxin A (tcdA), toxin B (tcdB) and binary toxin (cdtB). The genomes of extracted isolates were analyzed by 16S-23S rRNA-based PCR ribotyping.Results:The overall prevalence of C. difficile with two toxigenic genes including tcdA and tcdB was estimated at 4.0%. C. difficile was detected in 2.8%, 2.1%, 3.6% and 6.2% of chopped beef, ground beef, chopped mutton and ground mutton, respectively. The cdtB gene was not found in positive isolates. Eight different ribotypes were found in isolated strains that were not identical with those belonging to patients with CDI.Conclusions:The results of PCR-ribotyping indicate that no relationship exists between clinical and meat isolates. We therefore conclude that other sources than meat may function as a vector for CA-CDI.