Clostridium difficile toxin A (TcdA) and toxin B (TcdB), C. sordellii lethal toxin (TcsL) and C. novyi α-toxin (TcnA) are important pathogenicity factors, which represent the family of the clostridial glucosylating toxins (CGTs). Toxin A and B are associated with antibiotic-associated diarrhea and pseudomembraneous colitis. Lethal toxin is involved in toxic shock syndrome after abortion and α-toxin in gas gangrene development. CGTs enter cells via receptor-mediated endocytosis and require an acidified endosome for translocation of the catalytic domain into the cytosol. Here we studied the endocytic processes that mediate cell internalization of the CGTs. Intoxication of cells was monitored by analyzing cell morphology, status of Rac glucosylation in cell lysates and transepithelial resistance of cell monolayers. We found that the intoxication of cultured cells by CGTs was strongly delayed when cells were preincubated with dynasore, a cell-permeable inhibitor of dynamin, or chlorpromazine, an inhibitor of the clathrin-dependent endocytic pathway. Additional evidence about the role of clathrin in the uptake of the prototypical CGT family member toxin B was achieved by expression of a dominant-negative inhibitor of the clathrin-mediated endocytosis (Eps15 DN) or by siRNA against the clathrin heavy chain. Accordingly, cells that expressed dominant-negative caveolin-1 were not protected from toxin B-induced cell rounding. In addition, lipid rafts impairment by exogenous depletion of sphingomyelin did not decelerate intoxication of HeLa cells by CGTs. Taken together, our data indicate that the endocytic uptake of the CGTs involves a dynamin-dependent process that is mainly governed by clathrin.
Recent advances in the field of small molecule labels for live cell imaging promise to overcome some of the limitations set by the size of fluorescent proteins. We tested the tetracysteine-biarsenical labeling system in live cell fluorescence microscopy of reggie-1/flotillin-2 in HeLa and N2a cells. In both cell types, the biarsenical staining reagent FlAsH/Lumio Green accumulated in active mitochondria and led to mitochondrial swelling. This is indicative of toxic side effects caused by arsenic, which should be considered when this labeling system is to be used in live cell imaging. Mitochondrial accumulation of FlAsH/Lumio Green was reversed by addition of low concentrations of thiol-containing reagents during labeling and a subsequent high stringency thiol wash. Both ethanedithiol and beta-mercaptoethanol proved to be effective. We therefore established a staining protocol using beta-mercaptoethanol as thiol binding site competitor resulting in a specific staining of tetracysteine-tagged reggie-1/flotillin-2 of adequate signal to noise ratio, so that the more toxic and inconvenient ethanedithiol could be avoided. Furthermore, we show that staining efficiency was greatly enhanced by introducing a second tetracysteine sequence in tandem.
TRPM4b is a Ca2+‐activated, voltage‐dependent monovalent cation channel that has been shown to act as a negative regulator of Ca2+ entry and to be involved in the generation of oscillations of Ca2+ influx in Jurkat T‐lymphocytes. Transient overexpression of TRPM4b as an enhanced green fluorescence fusion protein in human embryonic kidney (HEK) cells resulted in its localization in the plasma membrane, as demonstrated by confocal fluorescence microscopy. The functionality and plasma membrane localization of overexpressed TRPM4b was confirmed by induction of Ca2+‐dependent inward and outward currents in whole cell patch clamp recordings. HEK‐293 cells stably overexpressing TRPM4b showed higher ionomycin‐activated Ca2+ influx than wild‐type cells. In addition, analysis of the membrane potential using the potentiometric dye bis‐(1,3‐dibutylbarbituric acid)‐trimethine oxonol and by current clamp experiments in the perforated patch configuration revealed a faster initial depolarization after activation of Ca2+ entry with ionomycin. Furthermore, TRPM4b expression facilitated repolarization and thereby enhanced sustained Ca2+ influx. In conclusion, in cells with a small negative membrane potential, such as HEK‐293 cells, TRPM4b acts as a positive regulator of Ca2+ entry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.