Bacterial spores are encased in a multilayered proteinaceous shell known as the coat. In Bacillus subtilis, over 50 proteins are involved in spore coat assembly but the locations of these proteins in the spore coat are poorly understood. Here, we describe methods to estimate the positions of protein fusions to fluorescent proteins in the spore coat by using fluorescence microscopy. Our investigation suggested that CotD, CotF, CotT, GerQ, YaaH, YeeK, YmaG, YsnD, and YxeE are present in the inner coat and that CotA, CotB, CotC, and YtxO reside in the outer coat. In addition, CotZ and CgeA appeared in the outermost layer of the spore coat and were more abundant at the mother cell proximal pole of the forespore, whereas CotA and CotC were more abundant at the mother cell distal pole of the forespore. These polar localizations were observed both in sporangia prior to the release of the forespore from the mother cell and in mature spores after release. Moreover, CotB was observed at the middle of the spore as a ring-or spiral-like structure. Formation of this structure required cotG expression. Thus, we conclude not only that the spore coat is a multilayered assembly but also that it exhibits uneven spatial distribution of particular proteins.Proper localization and assembly of proteins in cells and subcellular structures are essential features of living organisms. Complex protein assemblies, including ribosomes, flagella, and the cytokinetic machinery, play important roles in bacteria (26,27,40). Studying how these complex structures are formed is a fundamental theme in molecular biology. In this work, we developed a method to analyze one of the most complex bacterial protein assemblies: the spore coat of Bacillus subtilis.Sporulation of B. subtilis is initiated in response to nutrient limitation, and it involves a highly ordered program of gene expression and morphological change (33, 42). The first morphological change of sporulation is the appearance of an asymmetrically positioned septum that divides the cell into a larger mother cell and a smaller forespore. Next, the mother cell membrane migrates around the forespore membrane during a phagocytosislike process called engulfment. The completion of engulfment involves fusion of the mother cell membrane to pinch off the forespore within the mother cell. Compartment-specific gene expression brings about maturation of the spore and its release upon lysis of the mother cell (reviewed in reference 19). Mature spores remain viable during long periods of starvation and are resistant to heat, toxic chemicals, lytic enzymes, and other factors capable of damaging vegetative cells (30). Spores germinate and resume growth when nutrients become available (32).The outer portions of Bacillus spores consist of a cortex, a spore coat layer, and in some cases, an exosporium. The cortex, a thick layer of peptidoglycan, is deposited between the inner and the outer membranes of the forespore, and it is responsible for maintaining the highly dehydrated state of the core, thereby contri...