Parasitic organisms remain the scourge of the developed and underdeveloped worlds. Malaria, schistosomiasis, leishmaniasis, and trypanosomiasis, for example, still result in a large number of human deaths each year worldwide, while drug resistance among nematodes still poses a major problem to the livestock industries. Genome projects involving parasitic organisms are now abundant, and technologies for the investigations of the parasite transcriptome and proteome are well established. There is no doubt the era of the "omics" is with parasitology, and current trends in the discipline are addressing fundamental biological questions that can make best use of the new technologies, as well as the vast amount of new data being generated. Will this become the "golden age of molecular parasitology," leading to the control of parasitic diseases that have plagued mankind for hundreds of years? The primary aim of this paper is to review advances in the general area of parasite genomics, and to outline where the application of "omics" technologies can and have impacted on the development of new control methods for parasitic organisms.