Sunlight, and more specifically the UV component, induces several skin damages, including sunburns, erythema and photoaging. The purpose of this work is to set up an ex vivo human skin model to assess the capacity of active principles in protecting skin from the deleterious effects of solar radiation. Ex vivo human skin biopsies were cultured in an air–liquid interface and exposed to solar‐simulated radiation (SSR, 300–750 nm). L‐Carnosine (0.2% and 2%) was applied topically to be tested as photoprotective compound. The effect on oxidative stress induction, photoaging and skin transcriptional profile was assessed by evaluating reactive oxygen species, advanced glycosylation end products formation and gene expression changes. In our model, SSR increases ROS production and AGE accumulation and affects the expression of genes related to oxidative stress, pigmentation, immunity, inflammation and photoaging. Among these pathways, 11 genes were selected as biomarkers to evaluate the skin solar radiation response. Results showed that L‐Carnosine provides effective prevention against solar radiation damages reducing ROS, AGEs and mitigating the modulation of the selected biomarker genes. In conclusion, we report that our ex vivo skin model is a valuable system to assess the consequences of solar light exposure and the capacity of topically applied L‐Carnosine to counteract them.