The neurotropic virus Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. BDV represents an intriguing example of a virus whose persistence in neurons leads to altered brain function in the absence of overt cytolysis and inflammation. The bases of BDV-induced behavioral impairment remain largely unknown. To better characterize the neuronal response to BDV infection, we compared the proteomes of primary cultures of cortical neurons with and without BDV infection. We used two-dimensional liquid chromatography fractionation, followed by protein identification by nanoliquid chromatography-tandem mass spectrometry. This analysis revealed distinct changes in proteins implicated in neurotransmission, neurogenesis, cytoskeleton dynamics, and the regulation of gene expression and chromatin remodeling. We also demonstrated the selective interference of BDV with processes related to the adaptative response of neurons, i.e., defects in proteins regulating synaptic function, global rigidification of the cytoskeleton network, and altered expression of transcriptional and translational repressors. Thus, this work provides a global view of the neuronal changes induced by BDV infection together with new clues to understand the mechanisms underlying the selective interference with neuronal plasticity and remodeling that characterizes BDV persistence.The analysis of the response of a host cell to a pathogenic microorganism represents a daunting task, as it often results in complex and numerous changes in gene expression (37). Generally, these changes strongly depend on the nature of the pathogen interaction with its host. In the case of the central nervous system (CNS), the deleterious consequences of viral infection are often due to the cytopathic nature of viral replication (25, 38), or, alternatively, they can result from the immune response to the virus (31). However, some viruses can also persist in the CNS and cause diseases without an overt cytopathic effect or inflammation (1). These viral models provide a unique opportunity to unravel the molecular mechanisms underlying virus-induced neuronal dysfunction. A better understanding of the pathological consequences of viral persistence in the CNS may help to shed light on the pathogenesis of many neurological diseases of unclear etiology where viruses are thought to play a role (34, 47).Infection with Borna disease virus (BDV) represents an ideal paradigm for the investigation of the neuronal consequences due to the persistence of a noncytolytic virus. BDV is an enveloped virus with a nonsegmented, negative-strand RNA genome (13, 44). BDV infects a wide variety of mammals (35), possibly including humans (6, 29). Infected hosts develop a large spectrum of neurological disorders, ranging from immune-mediated diseases to behavioral alterations without inflammation (35, 41), reminiscent of symptoms observed in certain human neuropsychiatric diseases (28). These neurobehavioral manifestations reflect th...