Demyelination is the hallmark of numerous neurodegenerative conditions, including multiple sclerosis. Oligodendrocyte progenitors (OPCs), which normally mature into myelin-forming oligodendrocytes, are typically present around demyelinated lesions but do not remyelinate affected axons. Here, we find that the glycosaminoglycan hyaluronan accumulates in demyelinated lesions from individuals with multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. A high molecular weight (HMW) form of hyaluronan synthesized by astrocytes accumulates in chronic demyelinated lesions. This form of hyaluronan inhibits remyelination after lysolecithin-induced white matter demyelination. OPCs accrue and do not mature into myelin-forming cells in demyelinating lesions where HMW hyaluronan is present. Furthermore, the addition of HMW hyaluronan to OPC cultures reversibly inhibits progenitor-cell maturation, whereas degrading hyaluronan in astrocyte-OPC cocultures promotes oligodendrocyte maturation. HMW hyaluronan may therefore contribute substantially to remyelination failure by preventing the maturation of OPCs that are recruited to demyelinating lesions.
The neurofibromatosis-2 (NF2) gene encodes merlin, an ezrin-radixin-moesin-(ERM)-related protein that functions as a tumor suppressor. We found that merlin mediates contact inhibition of growth through signals from the extracellular matrix. At high cell density, merlin becomes hypo-phosphorylated and inhibits cell growth in response to hyaluronate (HA), a mucopolysaccharide that surrounds cells. Merlin's growth-inhibitory activity depends on specific interaction with the cytoplasmic tail of CD44, a transmembrane HA receptor. At low cell density, merlin is phosphorylated, growth permissive, and exists in a complex with ezrin, moesin, and CD44. These data indicate that merlin and CD44 form a molecular switch that specifies cell growth arrest or proliferation.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.
Epigenetic alterations in cell-type-specific gene expression control the transition of neural stem cells (NSCs) from predominantly neurogenic to predominantly gliogenic phases of differentiation, but how this switch occurs is unclear. Here, we show that brahma-related gene 1 (Brg1), an ATP-dependent chromatin remodeling factor, is required for the repression of neuronal commitment and the maintenance of NSCs in a state that permits them to respond to gliogenic signals. Loss of Brg1 in NSCs in conditional brg1 mutant mice results in precocious neuronal differentiation, such that cells in the ventricular zone differentiate into post-mitotic neurons before the onset of gliogenesis. As a result, there is a dramatic failure of astrocyte and oligodendrocyte differentiation in these animals. The ablation of brg1 in gliogenic progenitors in vitro also prevents growth-factor-induced astrocyte differentiation. Furthermore, proteins implicated in the maintenance of stem cells, including Sox1, Pax6 and Musashi-1, are dramatically reduced in the ventricular zones of brg1 mutant mice. We conclude that Brg1 is required to repress neuronal differentiation in NSCs as a means of permitting glial cell differentiation in response to gliogenic signals, suggesting that Brg1 regulates the switch from neurogenesis to gliogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.