In this paper, the dominant pole assignment problem, the dominant eigenstructure assignment problem and the robust dominant pole assignment problem for linear time-invariant positive systems with state feedback are considered. The dominant pole assignment problem is formulated as a linear programming problem, and the dominant eigenstructure problem is formulated as a quasiconvex optimisation problem with linear constraints. The robust dominant pole assignment problem is formulated as a non-convex optimisation problem with non-linear constraints which is solved using particle swarm optimisation (PSO) with an efficient scheme which employs the dominant eigenstructure assignment technique to accelerate the convergence of the PSO procedure. Each of the three problems can be further constrained by requiring that the controller has a pre-specified structure, or the gain matrix have both elementwise upper and lower bounds. These constraints can be incorporated into the proposed scheme without increasing the complexity of the algorithms. Both the continuous-time case and the discrete-time case are treated in the paper.