This paper presents a new delay system approach to network-based control. This approach is based on a new time-delay model proposed recently, which contains multiple successive delay components in the state. Firstly, new results on stability and H ∞ performance are proposed for systems with two successive delay components, by exploiting a new Lyapunov-Krasovskii functional and by making use of novel techniques for time-delay systems. An illustrative example is provided to show the advantage of these results. The second part of this paper utilizes the new model to investigate the problem of network-based control, which has emerged as a topic of significant interest in the control community. A sampled-data networked control system with simultaneous consideration of network induced delays, data packet dropouts and measurement quantization is modeled as a nonlinear time-delay system with two successive delay components in the state and, the problem of network-based H ∞ control is solved accordingly. Illustrative examples are provided to show the advantage and applicability of the developed results for network-based controller design. ᭧
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.