1998
DOI: 10.1016/s0005-1098(98)80021-6
|View full text |Cite
|
Sign up to set email alerts
|

Static Output Feedback Stabilization: An ILMI Approach

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
308
0
3

Year Published

1999
1999
2021
2021

Publication Types

Select...
6
2

Relationship

2
6

Authors

Journals

citations
Cited by 521 publications
(313 citation statements)
references
References 17 publications
2
308
0
3
Order By: Relevance
“…By solving the optimization problem P s with the system matrices A, B u and B w given in (19) and (20), the matrices C z and D z defined in (22), and the value…”
Section: Structure Modelmentioning
confidence: 99%
See 2 more Smart Citations
“…By solving the optimization problem P s with the system matrices A, B u and B w given in (19) and (20), the matrices C z and D z defined in (22), and the value…”
Section: Structure Modelmentioning
confidence: 99%
“…In this case, however, it should be highlighted that obtaining an optimal matrix K can involve serious computational difficulties [17][18][19][20]. According to the design method presented in [21], a suboptimal gain matrix K can be effectively computed by considering the state-feedback LMI optimization problem P s in (31) and the following transformations of the LMI variables X and Y:…”
Section: H ∞ Controller With Neighbouring State Informationmentioning
confidence: 99%
See 1 more Smart Citation
“…If no such matrices are found, we can conclude immediately that the system is not SOF stabilizable. Like many other iterative algorithms (Cao, Lam, & Sun, 1998;Cao, Sun, & Mao, 1998;Fujimori, 2004;Gadewadikar, Lewis, Xie, Kucera, & Abu-Khalaf, 2007;Iwasaki, 1999), the sequence of iterates depends on the selection of initial values, and appropriate selection of M (1) i will improve the solvability. In addition, it should be emphasized that the tuning parameter α may affect the optimum of the converged value γ (∞) * , although larger α make the condition less stringent.…”
Section: Remark 7 the Initial Values M (1)mentioning
confidence: 99%
“…ILMI Iterative Linear Matrix Inequality [16]: a partir de un valor inicial establecido heurísticamente para alguna de las variables de decisión (las mínimas necesarias para que el problema sea LMI), iterar sustituyendo de forma alternada en cada iteración hasta una cierta condición de parada o no factibilidad. Este método es quizá el más simple pero existe una fuerte dependencia del valor inicial y por ende, no garantiza la obtención de una soluciónóptima (o ni siquiera factible, aunque exista).…”
Section: Realimentación Estática Del Estadounclassified