Glycyrrhizic acid (GA) is the main active component of the licorice root, which has been known in traditional medicine since the ancient times. It is a molecule composed of a hydrophilic part, two glucuronic acid molecules, and a hydrophobic part, glycyrrhetinic acid. GA, when subjected to acid hydrolysis, releases 18β- and 18α-glycyrrhetinic acids. Glycyrrhetinic acid is most responsible for the pharmacological activities of licorice. GA has been reported to have multiple therapeutic properties: anti-viral, anti-inflammatory, antitumor, antimicrobial and hepatoprotective. Different approaches have revealed similar anti-inflammatory mechanisms of action of GA, such as the inhibition of translocation of nuclear factor-κB (NF-κB) and suppression of Tumour Necrosis Factor alpha (TNF-α) and interleukins. In this sense, several in vitro and in vivo studies have described the use of GA in the prevention and treatment of several complications, especially microbial/viral infection, and as a novel chemo-preventive agent for liver injury. Recent studies postulated that GA nanoparticles (GANPs) can be a promising strategy for the treatment of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infections. This mini-review summarizes the pharmacological activities of GA and its beneficial effects against various health problems and provides perspectives on the development of versatile nanoplatforms to overcome some limiting physicochemical properties and for enhancing the therapeutic benefits of GA.