Microtubes obtained from the self-assembly of L-diphenylalanine (FF-MTs) were evaluated as potential vehicles for drug delivery. The biological marker Rhodamine B (RhB) was chosen as a model drug and conjugated to the peptide arrays during self-organization in the liquid phase. Microscopy and X-ray studies were performed to provide morphological and structural information. The data revealed that the cargo was distributed either in small aggregates at the hydrophobic surface of the FF-MTs or homogeneously embedded in the structure, presumably anchored at polar sites in the matrix. Raman spectroscopy revealed notable shifts of the characteristic RhB resonance peaks, demonstrating the successful conjugation of the fluorophore and peptide assemblies. In vitro assays were conducted in erythrocytes and fibroblast cells. Interestingly, FF-MTs were found to modulate the release of the load. The release of RhB from the FF-MTs followed first-order kinetics with a steady-state profile, demonstrating the potential of these carriers to deliver drugs at constant rates in the body. Cytotoxicity investigations revealed high cell viability up to concentrations of 5 mg mL(-1), demonstrating the low toxicity of the FF-MTs.
Bupivacaine (BVC; S75–R25, NovaBupi® is an amide-type local anesthetic. Sodium alginate is a water-soluble linear polysaccharide. The present study reports the development of alginate/bis(2-ethylhexyl) sulfosuccinate (AOT) and alginate/chitosan nanoparticle formulations containing BVC (0.5%). The amounts of BVC associated in the alginate/AOT and alginate/chitosan nanoparticles were 87 ± 1.5 and 76 ± 0.9%, respectively. The average diameters and zeta potentials of the nanoparticles were measured for 30 days, and the results demonstrated the good stability of these particles in solution. The in vitro release kinetics showed a different behavior for the release profile of BVC in solution, compared with BVC-loaded alginate nanoparticles. In vitro and in vivo assays showed that alginate–chitosan BVC (BVC(ALG–CHIT)) and alginate–AOT BVC (BVC(ALG–AOT)) presented low cytotoxicity in 3T3-fibroblasts, enhanced the intensity, and prolonged the duration of motor and sensory blockades in a sciatic nerve blockade model.
Although technological innovations in the area of drug delivery claim for varied benefits, increasing the drug therapeutic index for human clinical application is the main goal pursued. Drug delivery systems for local anesthetics (LA) have attracted researchers due to many biomedical advantages associated to their application. Formulation approaches to systemically deliver LA include the encapsulation in liposomes, complexation in cyclodextrins, association with biopolymers and others carrier systems. Topical delivery systems for LA are characteristically composed by a diversity of adjuvants (viscosity inducing agents, preservatives, permeation enhancers, emollients,) and presentations such as semisolid (gel, creams, ointments), liquid (o/w and w/o emulsions, dispersions) and solid (patches) pharmaceutical forms. The proposed formulations aims to reduce the LA concentration used, increase its permeability and absorption, keep the LA at the target site for longer periods prolonging the anesthetic or analgesic effect and, finally, to decrease the clearance, local and systemic toxicity. This review deals with the innovations pertaining to formulations and techniques for drug-delivery of topical and injectable local anesthetics, as described in recent patents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.