Although technological innovations in the area of drug delivery claim for varied benefits, increasing the drug therapeutic index for human clinical application is the main goal pursued. Drug delivery systems for local anesthetics (LA) have attracted researchers due to many biomedical advantages associated to their application. Formulation approaches to systemically deliver LA include the encapsulation in liposomes, complexation in cyclodextrins, association with biopolymers and others carrier systems. Topical delivery systems for LA are characteristically composed by a diversity of adjuvants (viscosity inducing agents, preservatives, permeation enhancers, emollients,) and presentations such as semisolid (gel, creams, ointments), liquid (o/w and w/o emulsions, dispersions) and solid (patches) pharmaceutical forms. The proposed formulations aims to reduce the LA concentration used, increase its permeability and absorption, keep the LA at the target site for longer periods prolonging the anesthetic or analgesic effect and, finally, to decrease the clearance, local and systemic toxicity. This review deals with the innovations pertaining to formulations and techniques for drug-delivery of topical and injectable local anesthetics, as described in recent patents.
This study reports an investigation of the pharmacological activity, cytotoxicity and local effects of a liposomal formulation of the novel local anaesthetic ropivacaine (RVC) compared with its plain solution. RVC was encapsulated into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine, cholesterol and alpha-tocopherol (4:3:0.07, mole %). Particle size, partition coefficient determination and in-vitro release studies were used to characterize the encapsulation process. Cytotoxicity was evaluated by the tetrazolium reduction test using sciatic nerve Schwann cells in culture. Local anaesthetic activity was assessed by mouse sciatic and rat infraorbital nerve blockades. Histological analysis was performed to verify the myotoxic effects evoked by RVC formulations. Plain (RVC(PLAIN)) and liposomal RVC (RVC(LUV)) samples were tested at 0.125%, 0.25% and 0.5% concentrations. Vesicle size distribution showed liposomal populations of 370 and 130 nm (85 and 15%, respectively), without changes after RVC encapsulation. The partition coefficient value was 132 +/- 26 and in-vitro release assays revealed a decrease in RVC release rate (1.5 fold, P < 0.001) from liposomes. RVC(LUV) presented reduced cytotoxicity (P < 0.001) when compared with RVC(PLAIN). Treatment with RVC(LUV) increased the duration (P < 0.001) and intensity of the analgesic effects either on sciatic nerve blockade (1.4-1.6 fold) and infraorbital nerve blockade tests (1.5 fold), in relation to RVC(PLAIN). Regarding histological analysis, no morphological tissue changes were detected in the area of injection and sparse inflammatory cells were observed in only one of the animals treated with RVC(PLAIN) or RVC(luv) at 0.5%. Despite the differences between these preclinical studies and clinical conditions, we suggest RVC(LUV) as a potential new formulation, since RVC is a new and safe local anaesthetic agent.
The design of novel drug delivery systems for local anesthetics must focus on how to achieve higher uploads of the anesthetic into the carrier, and how to sustain its release. This comprehensive review should be useful to provide the reader with the current state-of-art regarding drug delivery formulations for local anesthetics and their possible clinical applications.
This study reports the development of nanostructured hydrogels for the sustained release of the eutectic mixture of lidocaine and prilocaine (both at 2.5%) for intraoral topical use. The local anesthetics, free or encapsulated in poly(ε-caprolactone) nanocapsules, were incorporated into CARBOPOL hydrogel. The nanoparticle suspensions were characterized in vitro in terms of particle size, polydispersity, and surface charge, using dynamic light scattering measurements. The nanoparticle concentrations were determined by nanoparticle tracking analysis. Evaluation was made of physicochemical stability, structural features, encapsulation efficiency, and in vitro release kinetics. The CARBOPOL hydrogels were submitted to rheological, accelerated stability, and in vitro release tests, as well as determination of mechanical and mucoadhesive properties, in vitro cytotoxicity towards FGH and HaCaT cells, and in vitro permeation across buccal and palatal mucosa. Anesthetic efficacy was evaluated using Wistar rats. Nanocapsules were successfully developed that presented desirable physicochemical properties and a sustained release profile. The hydrogel formulations were stable for up to 6 months under critical conditions and exhibited non-Newtonian pseudoplastic flows, satisfactory mucoadhesive strength, non-cytotoxicity, and slow permeation across oral mucosa. In vivo assays revealed higher anesthetic efficacy in tail-flick tests, compared to a commercially available product. In conclusion, the proposed hydrogel has potential for provision of effective and longer-lasting superficial anesthesia at oral mucosa during medical and dental procedures. These results open perspectives for future clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.