The liver can synthesize vitellogenin, the precursor of vitellin, which is needed for oocyte development and maturation. Here, we investigated the effects of infertility on liver structure, hormone regulation, and gene and protein networks in Japanese flounder (Paralichthys olivaceus). Results showed that the liver of infertile fish had fewer vacuoles and significantly lower serum vitellogenin (VTG) level than in liver of fertile fish. Whole transcriptomics analysis between infertile and fertile groups identified 2076 significantly differentially expressed (DE) mRNAs, 431 DE lncRNAs, 265 DE circRNAs, and 53 DE miRNAs. Proteomics analysis identified 838 DE proteins. Integrated analysis of whole transcriptomics and proteomics revealed 60 significantly DE genes and proteins associated with metabolism, immunity, signal transduction, and steroid biosynthesis. Moreover, non-coding RNA (miRNAs, circRNA, and lncRNA) transcripts involved in metabolism, immunity, and signal transduction in infertile liver were identified. In conclusion, this study shows that gonadal infertility is associated with not only changes in histological structure and hormone secretion but also changes in metabolism, immunity, and signal transduction networks in the liver. These results provide valuable information concerning the mechanism underlying infertility in fish.