Controlled synthesis of biomaterials with pH-responsive materials by radiation chemistry allows the development of new materials with fine-tuned properties that is affordable for simple production schemes and without potentially harmful chemicals. This work develops new lignocellulose-based materials with antimicrobial properties for wound dressing. The proposal was the radiation-grafting-induced of 4-vinylpyridine (4VP) onto a lignocellulosic membrane from Agave salmiana (v. Maguey) to provide pH-response. The lignocellulose-based materials were suitable for the load and release of an antimicrobial glycopeptide drug, improving the drug load and a prolonged release. Finally, the loaded pH-responsive materials exhibited excellent antimicrobial activity against Gram-positive bacteria at different pH. The new materials were characterized by several techniques such as thermogravimetric analyzes, contact angle, scanning electron microscopy, infrared spectroscopic, mechanical properties, nuclear magnetic resonance, X-rays photoelectron spectroscopy, and microbiological tests.
Graphical abstract