2017
DOI: 10.1017/pasa.2017.33
|View full text |Cite
|
Sign up to set email alerts
|

Mary, a Pipeline to Aid Discovery of Optical Transients

Abstract: The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and "orphan" Gamma-ray Burst afterglows. We present the Mary pipeline, a (mostly) automated tool to discover transients during high-cadenced observations with the Dark Energy Camera (DECam) at CTIO. The observations are part of the "Deeper Wider Faster" program, a multi… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
70
0

Year Published

2017
2017
2021
2021

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 65 publications
(72 citation statements)
references
References 38 publications
2
70
0
Order By: Relevance
“…The first binary neutron star merger event, GW170817, was indeed accompanied by a macronova (Abbott et al 2017). The light curves and spectra of this macronova are largely consistent with r-process-powered macronova models (Andreoni et al 2017;Arcavi et al 2017;Coulter et al 2017;Cowperthwaite et al 2017;Drout et al 2017;Evans et al 2017;Kasliwal et al 2017;Pian et al 2017;Smartt et al 2017;Tanvir et al 2017;Utsumi et al 2017).…”
Section: Introductionsupporting
confidence: 63%
“…The first binary neutron star merger event, GW170817, was indeed accompanied by a macronova (Abbott et al 2017). The light curves and spectra of this macronova are largely consistent with r-process-powered macronova models (Andreoni et al 2017;Arcavi et al 2017;Coulter et al 2017;Cowperthwaite et al 2017;Drout et al 2017;Evans et al 2017;Kasliwal et al 2017;Pian et al 2017;Smartt et al 2017;Tanvir et al 2017;Utsumi et al 2017).…”
Section: Introductionsupporting
confidence: 63%
“…The simultaneous detection of gravitational waves (GWs) from a neutron star-neutron star (NS-NS) merger (Abbott et al 2017a) and its electromagnetic (EM) counterparts opened a new window of the multimessenger astronomy. EM counterparts to GW170817 were observed over the entire wavelength range, from gamma-ray to radio wavelengths (Abbott et al 2017b;Andreoni et al 2017;Arcavi et al 2017;Coulter et al 2017;Cowperthwaite et al 2017;Díaz et al 2017;Drout et al 2017;Evans et al 2017;Hu et al 2017;Valenti et al 2017;Kasliwal et al 2017;Lipunov et al 2017;Pian et al 2017;Pozanenko et al 2018;Smartt et al 2017;Tanvir et al 2017;Troja et al 2017;Utsumi et al 2017;Mooley et al 2018;Hallinan et al 2017). In particular, a counterpart in optical and infrared wavelengths (named as SSS17a, AT 2017gfo or DLT17ck), is identified as the emission so-called a kilonova (also known as macronova).…”
Section: Introductionmentioning
confidence: 99%
“…The discovery, about 12 hours after the GBM trigger, of the associated optical transient AT2017gfo (Coulter et al 2017;Valenti et al 2017) triggered an intense ultraviolet, optical and infrared (UVOIR) follow up campaign (e.g. Andreoni et al 2017;Arcavi et al 2017;Chornock et al 2017;Covino et al 2017;Díaz et al 2017;Drout et al 2017;Evans et al 2017;Hal-1 Similar results were obtained by an independent analysis by Zhang et al (2018) linan et al 2017; Pian et al 2017;Pozanenko et al 2018;Smartt et al 2017;Utsumi et al 2017) -whose results have been collected and homogenized in Villar et al (2017) -which characterised with unprecedented details the emission and color evolution of the first ever spectroscopically confirmed (e.g. Pian et al 2017;Cowperthwaite et al 2017;Gall et al 2017;Kilpatrick et al 2017;McCully et al 2017;Nicholl et al 2017;Smartt et al 2017) kilonova (KN), i.e.…”
Section: Introductionmentioning
confidence: 99%