Arylpiperazine-based dopaminergic/serotonergic ligands exert neuroprotective activity. We examined the effect of arylpiperazine D 2 /5-HT 1A ligands, N-{4-[2-(4-phenyl-piperazin-1-yl)-ethyl}-phenyl]-picolinamide (6a) and N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), in experimental autoimmune encephalomyelitis (EAE), a model of neuroinflammation. Both compounds (10 mg/kg i.p.) reduced EAE clinical signs in spinal cord homogenate-immunized Dark Agouti rats. Compound 6b was more efficient in delaying the disease onset and reducing the maximal clinical score, which correlated with its higher affinity for D 2 and 5-HT 1A receptors. The protection was retained if treatment was limited to the effector (from day 8 onwards), but not the induction phase (day 0-7) of EAE. Compound 6b reduced CNS immune infiltration and expression of mRNA encoding the proinflammatory cytokines tumor necrosis factor, IL-6, IL-1, and GM-CSF, T H 1 cytokine IFN-c, T H 17 cytokine IL-17, as well as the signature transcription factors of T H 1 (T-bet) and T H 17 (RORct) cells. Arylpiperazine treatment reduced apoptosis and increased the activation of anti-apoptotic mediators Akt and p70S6 kinase in the CNS of EAE animals. The in vitro treatment with 6b protected oligodendrocyte cell line OLN-93 and neuronal cell line PC12 from mitogen-activated normal T cells or myelin basic proteinactivated encephalitogenic T cells. In conclusion, arylpiperazine dopaminergic/serotonergic ligands suppress EAE through a direct neuroprotective action and decrease in CNS inflammation.