Parietaria judaica (Urticaceae) grows abundantly in urban areas of the Mediterranean region. Its pollen is a major allergy source. We studied the species' distribution and abundance in and around Thessaloniki (Greece), pollen production and pollen season. We also examined how urban pollution affects pollen viability. Our ultimate goal was to obtain an estimate of the species' performance and ability to expand under different environmental conditions related to climate change. We mapped P. judaica and the other Urticaceae species. In a north- and a south-facing population, we recorded the progress of P. judaica flowering and estimated the pollen content per flower, shoot and surface unit. We concurrently assessed atmospheric circulation of Urticaceae pollen. We estimated P. judaica pollen viability and Cu, Pb and Zn concentrations in plants collected from sites differing in traffic intensity. P. judaica is the most abundant Urticaceae species in the area; its occurrence has increased dramatically over the last 100 years. Production of flowers is intense in spring and autumn. Flowering started 12 days earlier in the south-facing population in spring, and 3 days later in autumn. Pollen production was higher in spring and in the south-facing population. Flower and pollen production were positively correlated with the size of the plant and the flower, respectively. Copper and lead concentrations in plants were positively correlated with pollen viability, which was higher for plants collected from high-traffic sites. P. judaica has a high phenotypic plasticity; this is a feature that promotes success of expansive and invasive species. It is also well adapted to warm and polluted urban environments. The climatic change forecast for the Mediterranean region could provoke earlier, longer, and more pronounced flowering and, consequently, more P. judaica pollen in the air. In return, this would result in increased severity of Parietaria pollinosis.