Background
In winemaking, it is standard practice to ferment white wines at low temperatures (10–18 ºC). However, low temperatures increase the fermentation duration and risk of problem ferments, which can lead to significant costs. The length of the lag period at fermentation initiation is one parameter that is heavily impacted by low temperatures. Therefore, the identification of Saccharomyces cerevisiae genes with an impact on fermentation kinetics, such as lag time, is of interest for winemaking.
Results
We selected a set of 28 S. cerevisiae BY4743 single deletants based on a prior list of candidate open reading frames (ORFs) mapped to quantitative trait loci (QTLs) on chromosomes VII and XIII influencing the duration of fermentative lag time by bulk segregant analysis. Five out of 28 BY4743 deletants, Δapt1, Δcgi121, Δclb6, Δrps17a, and Δvma21, differed significantly in their fermentative lag phase duration compared to BY4743 in synthetic grape medium (SGM) at 15 ºC, over 72 h. Fermentation at 12.5 ºC for 528 h, to show a greater resolution of the lag times, identified the inability of BY4743 Δapt1 to initiate fermentation and confirmed the significantly longer lag times of the BY4743 Δcgi121, Δrps17a, and Δvma21 deletants. The three candidate ORFs were deleted in S. cerevisiae RM11-1a and S288C to perform single reciprocal hemizygosity analysis (RHA). RHA hybrids and single deletants of RM11-1a and S288C were fermented at 12.5 ºC in SGM. Lag time measurements confirmed genetic linkage of CGI121 on chromosome XIII, encoding a component of the EKC/KEOPS complex, to fermentative lag phase. Nucleotide sequences of RM11-1a and S288C CGI121 alleles differed by only one synonymous nucleotide suggesting that codon bias or positional effects might be responsible for the impact of this gene on lag phase duration.
Conclusion
This research demonstrates a new role of CGI121 in fermentative lag time in S. cerevisiae during fermentation and highlights the applicability of QTL analysis for investigating complex phenotypic traits in yeast, such as fermentation kinetics.