Workflow process mining is becoming a more and more valuable activity in workflowsupported enterprises, and through which it is possible to achieve the high levels of qualitative business goals in terms of improving the effectiveness and efficiency of the workflow-supported information systems, increasing their operational performances, reducing their completion times with minimizing redundancy times, and saving their managerial costs. One of the critical challenges in the workflow process mining activity is to devise a reasonable approach to discover and recognize the bottleneck points of workflow process models from their enactment event histories. We have intuitively realized the fact that the iterative process pattern of redo-activities ought to have the high possibility of becoming a bottleneck point of a workflow process model. Hence, we, in this paper, propose an algorithmic approach and its implementation to discover the redo-activities and their performers' involvements patterns from workflow process enactment event logs. Additionally, we carry out a series of experimental analyses by applying the implemented algorithm to four datasets of workflow process enactment event logs released from the BPI Challenges. Finally, those discovered redo-activities and their performers' involvements patterns are visualized in a graphical form of information control nets as well as a tabular form of the involvement percentages, respectively.