Cloud computing has evolved significantly, intending to provide users with fast, dependable, and low-cost services. With its development, malicious users have become increasingly capable of attacking both its internal and external security. To ensure the security of cloud services, encryption, authorization, firewalls, and intrusion detection systems have been employed. However, these single monitoring agents, are complex, time-consuming, and they do not detect ransomware and zero-day vulnerabilities on their own. An innovative Record and Replay-based hybrid Honeynet (R2NET) system has been developed to address this issue. Combining honeynet with Record and Replay (RR) technology, the system allows fine-grained analysis by delaying time-consuming analysis to the replay step. In addition, a machine learning algorithm is utilized to cluster the logs of attackers and store them in a database. So, the accessing time for analyzing the attack may be reduced which in turn increases the efficiency of the proposed framework. The R2NET framework is compared with existing methods such as EEHH net, HoneyDoc, Honeynet system, and AHDS. The proposed system achieves 7.60%, 9.78%%, 18.47%, and 31.52% more accuracy than EEHH net, HoneyDoc, Honeynet system, and AHDS methods.