Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.