Study finds that eukaryotic translation initiation factor 3 subunit D (EIF3D) may play an important role in aberrant alternative splicing (AS) events in tumors. AS possesses a pivotal role in both tumour progression and the constitution of the tumour microenvironment (TME). Regrettably, our current understanding of AS remains circumscribed especially in the context of immunogene-related alternative splicing (IGAS) profiles within Head and Neck Squamous Cell Carcinoma (HNSC). In this study, we comprehensively analyzed the function and mechanism of action of EIF3D by bioinformatics analysis combined with
in vitro
cellular experiments, and found that high expression of EIF3D in HNSC was associated with poor prognosis of overall survival (OS) and progression-free survival (PFS). The EIF3D low expression group had a higher degree of immune infiltration and better efficacy against PD1 and CTLA4 immunotherapy compared to the EIF3D high expression group. TCGA SpliceSeq analysis illustrated that EIF3D influenced differentially spliced alternative splicing (DSAS) events involving 105 differentially expressed immunogenes (DEIGs). We observed an induction of apoptosis and a suppression of cell proliferation, migration, and invasion in EIF3D knock-down FaDu cells. RNA-seq analysis unveiled that 531 genes exhibited differential expression following EIF3D knockdown in FaDu cells. These include 52 DEIGs. Furthermore, EIF3D knockdown influenced the patterns of 1923 alternative splicing events (ASEs), encompassing 129 IGASs. This study identified an RNA splicing regulator and revealed its regulatory role in IGAS and the TME of HNSC, suggesting that EIF3D may be a potential target for predicting HNSC prognosis and immunotherapeutic response.