Glucose and related hexoses are very important metabolic substrates. Their most important function is to provide quick fuel for most organisms in all three kingdoms because they are the first substrate for energy production in the form of ATP through glycolysis and the subsequent metabolic pathways. In this paper we review the current information about how glucose and related hexoses are transported across biological membranes to carry out their function either as a metabolic molecule or as energy store in marine invertebrate organisms. In these animals, there are two sugar transport systems that are mediated by the sodium/solute symporter family proteins (SGLT) and the major facilitative super-family proteins (GLUT). The most studied sugar transporters in marine invertebrates are involved with dietary sugar uptake, such as SGLT1, SGLT4, GLUT2 and GLUT5, however more studies need to be done to extend the knowledge about these and other sugar transporters involved in metabolic processes.
Transporters of glucose and other hexosesGlucose is the major product of carbon fixation by photosynthetic organisms and consequently, it is the most abundant molecule on earth. Glucose is found as a monomer or as a polymer, including cellulose, starch, glycogen and others. Hexoses importance resides in their variety of functions. They are structural components for all living cells, glucose is an important metabolic substrate, serves as a precursor for synthesis of many other molecules, and the most important function shared with related hexoses, is that it is the first fuel used by most organisms in all three kingdoms serving as quick substrate for energy production in the form of ATP through glycolysis and the subsequent metabolic pathways.In higher organisms, glucose is mainly obtained directly from the diet when disaccharides and polysaccharides are hydrolyzed. After that, glucose needs to travel a long way to reach the target cells to be metabolized or stored. The first step is the transfer from the lumen of the small intestine to epithelium cells, followed by transport by blood circulation to each organ, tissue and cell. Due to the hydrophilic nature, these processes involve the transfer of glucose (and other hexoses) across the biological lipid bi-layer plasma cell membranes (Wilson-O'Brien et al. 2010).This transport is mediated by integral transporter proteins which are classified based on phylogenetic and functional data (Wilson-O'Brien et al. 2010). Thus the hexose transporters belong to one of two protein super families: the sodium/solute symporter family (SSSF; (Reizer et al. 1994)) and the major facilitative super-family (MFS; (Marger and Saier Jr, 1993; Pao et al. 1998; Saier Jr, 2000)) whose Pfam numbers in the database http://pfam.janelia.org are PF00474 and CL0015 respectively.