The zoonotic SARS-CoV-2 virus was present before the onset of the pandemic. It undergoes evolution, adaptation, and selection to develop variants that gain high transmission rates and virulence, resulting in the pandemic. Structurally, the spike protein of the virus is required for binding to ACE2 receptors of the host cells. The gene coding for the spike is known to have a high propensity of mutations, as a result generating numerous variants. The variants can be generated by random point mutations or recombination during replication. However, SARS-CoV-2 can also produce hybrid variants on co-infection of the host by two distinct lineages of the virus. The genomic sequences of the two variants undergo recombination to produce the hybrid variants. Additionally, these sub-variants also contain numerous mutations from both the parent variants, as well as some novel mutations unique to the hybrids. The hybrid variants (XD, XE, and XF) can be identified through numerous techniques, such as peak PCR, NAAT, and hybrid capture SARS-CoV-2 NGS (next generation sequencing) assay, etc., but the most accurate approach is genome sequencing. There are numerous immunological diagnostic assays, such as ELISA, chemiluminescence immunoassay, flow-cytometry-based approaches, electrochemiluminescence immunoassays, neutralization assays, etc., that are also designed and developed to provide an understanding of the hybrid variants, their pathogenesis, and other reactions. The objective of our study is to comprehensively analyze the variants of SARS-CoV-2, especially the hybrid variants. We have also discussed the techniques available for the identification of hybrids, as well as the immunological assays and studies for analyzing the hybrid variants.