We have previously shown that SV40 small t antigen (st) cooperates with deregulated cyclin E to activate CDK2 and bypass quiescence in normal human fibroblasts (NHF). Here we show that st expression in serum-starved and density-arrested NHF specifically induces up-regulation and loading of CDC6 onto chromatin. Coexpression of cyclin E results in further accumulation of CDC6 onto chromatin concomitantly with phosphorylation of CDK2 on Thr-160 and CDC6 on Ser-54. Investigation of the mechanism leading to CDC6 accumulation and chromatin loading indicates that st is a potent inducer of cdc6 mRNA expression and increases CDC6 protein stability. We also show that CDC6 expression in quiescent NHF efficiently promotes cyclin E loading onto chromatin, but it is not sufficient to activate CDK2. Moreover, we show that CDC6 expression is linked to phosphorylation of the activating T loop of CDK2 in serumstarved NHF stimulated with mitogens or ectopically expressing cyclin E and st. Our data suggest a model where the combination of st and deregulated cyclin E result in cooperative and coordinated activation of both an essential origin licensing factor, CDC6, and an activity required for origin firing, CDK2, resulting in progression from quiescence to S phase.Upon mitogenic stimulation mammalian G1 CDKs 4 trigger passage through the restriction point and the transition into DNA replication. In particular, cyclin E/CDK2 is activated in mid to late G1 and phosphorylates a variety of substrates that play critical roles in these processes. CDK2 cooperates with D-type cyclin/CDKs to inactivate E2F/pocket protein repressor complexes inducing the expression of DNA synthesis factors and other cell cycle regulators (reviewed in Refs. 1 and 2). CDK2 also phosphorylates DNA replication factors facilitating prereplication complex assembly and origin firing and plays additional roles in centrosome duplication and histone synthesis (reviewed in Ref. 1). In particular, it has been proposed that CDK2 phosphorylates the essential origin licensing factor CDC6 promoting its stabilization prior to inactivation of the APC Cdh1 ubiquitin ligase (3). This is thought to ensure that CDC6 accumulation precedes accumulation of other APC substrates that inhibit origin licensing. Moreover, CDK2-independent cyclin E functions have also been reported to be important for prereplication complex assembly in cells in transit from G0 into G1 (4, 5). In keeping with its role as positive regulator of major G1 transitions, deregulation of the cyclin E via gene amplification or defective protein turnover is commonly seen in primary tumors and is associated with poor prognosis (6 -8). In normal fibroblasts, ectopic expression of cyclin E has been associated with shortening of the G1 phase of the cell cycle (9, 10), and with induction of DNA damage (reviewed in Ref. 8). Cyclin E deregulation in certain human tumor cell lines and immortalized rat fibroblasts is associated with mitogen-independent cell cycle entry and progression through the cell cycle (11). However, w...