The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT₅₀) ranged from -4.7 to -12.0 °C between the genotypes. Among the F. vesca genotypes, the LT₅₀ varied from -7.7 °C to -12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT₅₀) -7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT₅₀ estimates and the expression of ADH and total dehydrins were highly correlated (r(adh) = -0.87, r (dehyd) = -0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT₅₀ estimates early in the acclimation period, only galactinol proved to be a good LT₅₀ predictor after 28 days of acclimation (r(galact) = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry.