EMBO reports VOL 14 | NO 7 | 2013 579 hot off the press hot off the press C ontrol of exocytotic neurotransmitter release is essential for communication in the nervous system and for preventing synaptic abnormalities. The function of synaptosomal-associated protein of 25 kDa (SNAP-25) as a crucial component of the core machinery required for synaptic vesicle fusion is well established, but evidence is growing to suggest an additional modulatory role in neurotransmission. In this issue of EMBO reports, Antonucci et al show that the efficacy of evoked glutamate release is modulated by the expression levels of SNAP-25-a function that might relate to the ability of SNAP-25 to modulate voltage-gated calcium channels and presynaptic calcium ion concentration [1]. Altered synaptic transmission and short-term plasticity due to changes in SNAP-25 expression might have direct consequences for brain function and for the development of neuropsychiatric disorders.Communication between neurons is essential for brain function and occurs through chemical neurotransmission at specialized cell-cell contacts termed 'synapses'. Within the nerve terminal of the presynaptic neuron electrical stimuli cause the opening of voltage-gated calcium channels (VGCCs), which results in the influx of calcium ions. This triggers the exocytic release of neurotransmitter by fusion of synaptic vesicles with the presynaptic membrane. Released neurotransmitter molecules are detected by specific receptors expressed by the postsynaptic neuron.Calcium-induced synaptic vesicle fusion requires complex assembly between the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) synaptobrevin 2, located on the synaptic vesicle, and the abundant plasma membrane SNAREs SNAP-25 and syntaxin 1, on the opposing presynaptic plasma membrane. SNARE complex assembly is tightly regulated by Sec1/Munc18-like proteins [2]. Further regulatory factors such as the synaptic vesicle calcium-sensing protein synaptotagmin 1 couple the SNARE machinery to presynaptic calcium influx. SNARE-mediated neuro transmitter release occurs preferentially at the active zone-a presynaptic membrane domain specialized for exocytosis within which VGCCs are positioned close to docked synaptic vesicles through a proteinaceous cytomatrix and associated cell adhesion molecules [3,4].An unresolved conundrum in synaptic transmission remains-the observation that SNARE proteins, such as SNAP-25, are among the most highly expressed, in copy number, presynaptic proteins, whilst only a handful of SNARE complexes are needed to drive the fusion of a single synaptic vesicle [5]. Why, then, are SNAREs such as SNAP-25 so abundant? One possible explanation might be that SNARE proteins, in addition to forming trans-SNARE complexes, assemble with other proteins, and such partitioning might regulate neurotransmission. For example, SNAP-25 has been shown to negatively regulate VGCCs in glutamatergic but not in GABAergic neurons [6]. A secondary regulatory function of SNAP-25 is also su...