Dyslexia has been linked to a number of chromosomal regions including 15q. Recently a gene, EKN1, with unknown function in the linked region, was identified via a translocation breakpoint. This gene was further supported as a susceptibility locus by association studies in a Finnish sample. We investigated the possibility of this locus as a susceptibility gene contributing to dyslexia, analyzed as a categorical trait, and analyzed key reading phenotypes as quantitative traits using six polymorphisms including the two previously reported to be associated with dyslexia. In our sample of 148 families identified through a proband with reading difficulties, we found significant evidence for an association to dyslexia analyzed as a categorical trait and found evidence of association to the reading and related processes of phonological awareness, word identification, decoding, rapid automatized naming, language ability, and verbal short-term memory. However, association was observed with different alleles and haplotypes than those reported to be associated in a Finnish sample. These findings provide support for EKN1 as a risk locus for dyslexia and as contributing to reading component processes and reading-related abilities. Based on these findings, further studies of this gene in independent samples are now required to determine the relationship of this gene to dyslexia.
The gene for the synaptic vesicle docking fusion protein, synaptosomal-associated protein of 25 kDa (SNAP-25), has been implicated in the etiology of attention-deficit hyperactivity disorder (ADHD) based on the mouse mutant strain coloboma. This neutron-irradiation induced mouse strain is hemizygous for the deletion of the SNAP-25 gene and displays spontaneous hyperactivity that is responsive to dextroamphetamine. Because of these characteristics, this strain has been suggested to be a mouse model for ADHD. We identified using single stranded conformational polymorphism analysis (SSCP) four DNA sequence variants in the 3Ј untranslated region of the human SNAP-25 gene. We searched for polymorphisms in the 3Ј untranslated region because the intron/exon structure of this gene has not yet been determined. We tested for linkage of this gene and ADHD using two of the identified polymorphisms that change a restriction enzyme recognition site. We examined the transmission of the alleles of each of these polymorphisms and the haplotypes of both polymorphisms using the transmission disequilibrium test in a sample of 97 small nuclear families consisting of a proband with ADHD, their parents, and affected siblings. We observed biased transmission of the haplotypes of the alleles of these two polymorphisms. Our findings are suggestive of a role of this gene in ADHD. Molecular Psychiatry (2000) 5, 405-409.
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10 −8 ) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.