Background: Alpinia oxyphylla is an important edible and medicinal herb, and its dried fruits are widely used in traditional herbal medicine. Flavonoids are one of the main chemical compounds in A. oxyphylla ; however, the genetic and molecular mechanisms of flavonoid biosynthesis are not well understood. Methods: We performed transcriptome analysis in the fruit, root, and leaf tissues of A. oxyphylla to delineate tissue-specific gene expression and metabolic pathways in this medicinal plant. Results: In all, 8.85, 10.10, 8.68, 6.89, and 8.51 Gb clean data were obtained for early-, middle-, and late-stage fruits, leaves, and roots, respectively. Furthermore, 50,401 unigenes were grouped into functional categories based on four databases, namely Nr (47,745 unigenes), Uniprot (49,685 unigenes), KOG (20,153 unigenes), and KEGG (27,285 unigenes). A total of 3,110 differentially expressed genes and five distinct clusters with similar expression patterns were obtained, in which 27 unigenes encoded 13 key enzymes (such as CHS, CHI, F3H, FLS, ANS ) associated with flavonoid biosynthesis. Conclusion: The tissue-specific expression of the genes corresponds to accumulation of flavonoids in these tissues.These results provide insights into the molecular mechanism of flavonoid biosynthesis in A. oxyphylla and application of genetically engineered varieties of A. oxyphylla .