Sophora japonica is a traditional Chinese medicinal ingredient that is widely used in the medicine, food, and industrial dye industries. Since flavonoids are the main components of S. japonica, studying the flavonoid composition and content of this plant is important. This study aimed to identify molecules involved in the flavonoid biosynthetic pathways in S. japonica. Deep sequencing was performed, and 85,877,352 clean reads were filtered from 86,095,152 raw reads. The clean reads were spliced to obtain 111,382 unigenes, which were then annotated with NR, GO, KEGG, eggNOG. Differential expression analysis and NR function prediction revealed 18 differentially expressed unigenes associated with 13 enzymes in flavonoid biosynthetic pathways. Our results reveal new insights on secondary metabolite biosynthesis-related genes in S. japonica and enhance the potential applications of S. japonica in genetic engineering.
Polygala tenuifolia Willd. is a traditional Chinese herbal medicine that is widely used in treating nervous system disorders. Triterpene saponins in P. tenuifolia (polygala saponins) have excellent biological activity. As a precursor for the synthesis of presenegin, oleanolic acid (OA) plays an important role in the biosynthesis of polygala saponins. However, the mechanism behind the biosynthesis of polygala saponins remains to be elucidated. In this study, we found that CYP716A249 (GenBank: ASB17946) oxidized the C-28 position of β-amyrin to produce OA. Using quantitative real-time PCR, we observed that CYP716A249 had the highest expression in the roots of 2-year-old P. tenuifolia, which provided a basis for the selection of samples for gene cloning. To identify the function of CYP716A249, the strain R-BE-20 was constructed by expressing β-amyrin synthase in yeast. Then, CYP716A249 was co-expressed with β-amyrin synthase to construct the strain R-BPE-20 by using the lithium acetate method. Finally, we detected β-amyrin and OA by ultra-HPLC-Q Exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry and GC-MS. The results of this study provide insights into the biosynthesis pathway of polygala saponins.
As one of the most important traditional Chinese medicine, the quality of Polygala tenuifolia is difficult to control and a new method must be established to facilitate/assist the breeding of P. tenuifolia. In this study, UPLC/Q-TOF-MS-based metabolomics analysis was performed to determine the chemical composition and screen metabolite biomarkers according to agronomic traits. A total of 29 compounds and 18 metabolite biomarkers were found. AFLP-based marker-assisted selection (MAS) was used to identify molecular marker bands and screen characteristic bands associated with specific agronomic traits. 184 bands and 76 characteristic AFLP bands were found. The correlation network between compounds and characteristic AFLP bands was built, so we may directly breed certain P. tenuifolia herbs with special agronomic traits (or characteristic AFLP bands), which exhibit specific pharmacological functions depending on the content of the active compounds. The proposed method of metabolomics coupled with MAS could facilitate/assist the breeding of P. tenuifolia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.