The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is expressed abundantly in latently infected sensory neurons. LAT-deletion-mutant virus strains have reducedreactivation phenotypes in small animal models of infection, demonstrating that LAT plays an important role in the latency-reactivation cycle of HSV-1. Previous studies demonstrated that the anti-apoptosis functions of LAT are important for regulating the latency-reactivation cycle because three different anti-apoptosis genes can substitute for LAT. Although LAT inhibits caspase 3 activation, the signalling pathway by which LAT inhibits caspase 3 activation was not identified. In this study, we analysed mouse neuroblastoma cells (C1300) that express LAT stably (DC-LAT6 cells) following serum starvation. As expected, DC-LAT6 cells were resistant to apoptosis following serum withdrawal. Levels of total and phosphorylated AKT (protein kinase B), a serine/threonine protein kinase that promotes cell survival, were higher in DC-LAT6 cells after serum withdrawal than in C1300 cells or a cell line stably transfected with a LAT promoter mutant (DC-DLAT311). A specific AKT inhibitor reduced the anti-apoptosis functions of LAT and phosphorylated AKT levels. After serum withdrawal, more DC-LAT6 cells sprouted neurites and exhibited a differentiated morphology. NeuN (neuronal nuclei), a neuron-specific nuclear protein, was expressed abundantly in DC-LAT6 cells, but not C1300 cells, after serum withdrawal, further supporting the concept that LAT enhanced neuronal-like morphology. Collectively, these studies suggested that LAT, directly or indirectly, maintained total and phosphorylated AKT levels, which correlated with increased cell survival and mature neuronal-like morphology.