Current Japanese clinical practice involves the usage of large amounts of new macrolides such as clarithromycin and roxithromycin for the treatment of diffuse panbronchiolitis, Helicobacter pylori and Mycobacterium avium complex infections. In this study, the phenotypes, genotypes, and macrolide resistance mechanisms of macrolide-inactivating Escherichia coll recovered in Japan from 1996 to 1997, were investigated.The isolation rate of erythromycin A highly-resistant E. coli (MIC > 1600 /xg/ml) in Japan slightly increased from 0.5% in 1986 to 1.2% in 1997. In six macrolide-resistant strains, recovered from the strains collected for this study during 1996 to 1997, the inactivation of macrolide could be detected with or without added ATPin the assay system. The appearance of erythromycin A-inactivating enzyme independent of ATPwas novel from Japanese isolates, and the ]H NMRspectra of oleandomycin hydrolyzed by the three ATP-independent isolates were examined. It was clearly shown that the lactone ring at the position of C-13 was cleaved as 13-H signal in aglycon of oleandomycin upper shifted. These results suggested the first detection of macrolide-lactone ring-hydrolase from clinical isolates in Japan. These results suggested the first detection of an ATP-independent macrolide-hydrolyzing enzyme from Japanese clinical isolates. Substrate specificity of the macrolide-hydrolyzing enzyme was determined with twelve macrolides including the newer membersof this group and it was found that not only erythromycin A but also the new macrolides, such as clarithromycin, roxithromycin, and azithromycin were inactivated. The NMRdata, broad spectrum of activity, and independence of co-enzymesupported our namingof the enzymeas a macrolide esterase. PCRmethodology was employed to detect an ereB-like gene from the 3 isolates producing macrolide esterase, and one of these was subsequently shown to contain both ereB-like and ermB-Wksgenes. It was also clearly shown that the other three isolates, which inactivated macrolide in the presence of ATP, had an mphA-liko gene.