Peptide and protein drugs have evolved in recent years into mainstream therapeutics, representing a significant portion of the pharmaceutical market. Peptides and proteins exhibit highly diverse structures, broad biological activities as hormones, neurotransmitters, structural proteins, metabolic modulators and therefore have a significant role as both therapeutics and biomarkers. Understanding the metabolism of synthetic or biotechnologically derived peptide and protein drugs is critical for pharmaceutical development as metabolism has a significant impact on drug efficacy and safety. Although the same principles of pharmacokinetics and metabolism of small molecule drugs apply to peptide and protein drugs, there are few notable differences. Moreover, the study of peptide and protein drug metabolism is a rather complicated process which requires sophisticated analytical techniques, and mass spectrometry based approaches have provided the capabilities for efficient and reliable quantification, characterization, and metabolite identification. This review article will focus on the current use of mass spectrometry for the study of the metabolism of peptide and protein drugs.