1,2-Dicarbonyl compounds, formed from carbohydrates during thermal processing in the course of caramelization and Maillard reactions, are intensively discussed as precursors for advanced glycation endproducts in foods and in vivo. To obtain information about the uptake of individual compounds with commonly consumed foods, a comprehensive analysis of the content of 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), and methylglyoxal (MGO) together with 5-hydroxymethylfurfural (HMF) in 173 food items like bakery products, pasta, nonalcoholic and alcoholic beverages, sweet spreads, and condiments was performed. Following suitable cleanup procedures, 1,2-dicarbonyl compounds were quantitated after derivatization with o-phenylenediamine via RP-HPLC with UV detection. 3-DG proved to be the predominant 1,2-dicarbonyl compound with concentrations up to 410 mg/L in fruit juices, 2622 mg/L in balsamic vinegars, and 385 mg/kg in cookies, thus exceeding the corresponding concentrations of HMF. 3-DGal was found to be of relevance in many foods even in the absence of galactose. MGO was only of minor quantitative importance in all foods studied, except for manuka honey. Dietary intake was estimated to range between 20 and 160 mg/day for 3-DG and 5 and 20 mg/day for MGO, respectively.
The reaction of reducing carbohydrates with amino compounds described in 1912 by Louis-Camille Maillard is responsible for the aroma, taste, and appearance of thermally processed food. The discovery that non-enzymatic conversions also occur in organisms led to intensive investigation of the pathophysiological significance of the Maillard reaction in diabetes and ageing processes. Dietary Maillard products are discussed as "glycotoxins" and thus as a nutritional risk, but also increasingly with regard to positive effects in the human body. In this Review we give an overview of the most important discoveries in Maillard research since it was first described and show that the complex reaction, even after over one hundred years, has lost none of its interdisciplinary actuality.
In glycation reactions, the side chains of protein-bound nucleophilic amino acids such as lysine and arginine are post-translationally modified to a variety of derivatives also known as Maillard reaction products (MRPs). Considerable amounts of MRPs are taken up in food. Here we have studied the interactions of free and dipeptide-bound MRPs with intestinal transport systems. Free and dipeptide-bound derivatives of N(6)-(1-fructosyl)lysine (FL), N(6)-(carboxymethyl)lysine (CML), N(6)-(1-carboxyethyl)lysine (CEL), formyline, argpyrimidine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1) were synthesized. The inhibition of L-[(3)H]lysine and [(14) C]glycylsarcosine uptakes was measured in Caco-2 cells which express the H(+)/peptide transporter PEPT1 and lysine transport system(s). Glycated amino acids always displayed lower affinities than their unmodified analogues towards the L-[(3)H]lysine transporter(s). In contrast, all glycated dipeptides except Ala-FL were medium- to high-affinity inhibitors of [(14)C]Gly-Sar uptake. The transepithelial flux of the derivatives across Caco-2 cell monolayers was determined. Free amino acids and intact peptides derived from CML and CEL were translocated to very small extents. Application of peptide-bound MRPs, however, led to elevation (up to 80-fold) of the net flux and intracellular accumulation of glycated amino acids, which were hydrolyzed from the dipeptides inside the cells. We conclude 1) that free MRPs are not substrates for the intestinal lysine transporter(s), and 2) that dietary MRPs are absorbed into intestinal cells in the form of dipeptides, most likely by the peptide transporter PEPT1. After hydrolysis, hydrophobic glycated amino acids such as pyrraline, formyline, maltosine, and argpyrimidine undergo basolateral efflux, most likely by simple diffusion down their concentration gradients.
1,2-Dicarbonyl compounds are formed in food during Maillard and caramelization reactions. 3-Deoxy-D-threo-hexos-2-ulose (3-deoxygalactosone, 3-DGal) and galactosone, two 1,2-dicarbonyl compounds originating from the degradation of galactose, were synthesized and converted to the respective quinoxalines, which were characterized by NMR spectroscopy. Analytical separation of the quinoxalines from the epimeric glucose-derived quinoxalines of 3-deoxyglucosone (3-DG) and glucosone was achieved by RP-HPLC on an RP-phenyl column. This method was used to study the relevance of galactose-derived 1,2-dicarbonyl compounds in a variety of foods. 3-DG and 3-DGal were quantified besides 3-deoxypentosone, methylglyoxal, and glyoxal after derivatization with o-phenylenediamine in lactose-hydrolyzed UHT milk, ranging from 2.5 to 18 mg/L and from 2.0 to 11 mg/L, respectively. The concentrations of both compounds tended to be higher in other lactose-hydrolyzed food items as well. During storage of lactose-hydrolyzed milk, the concentrations of the 3-deoxyhexosones first increased, but especially the concentration of 3-DGal tended to decrease on prolonged storage, pointing to lower stability of the compound. 3-DGal was also detected in galactose-free food items such as apple juice and beer. The possible formation of 3-DGal from 3-DG by 3,4-dideoxyglucosone-3-ene as an intermediate is discussed. Compared to the relatively high concentrations of 3-DG and 3-DGal, 3-deoxypentosone, methylglyoxal, and glyoxal were of only minor quantitative importance in all foods studied.
Oxidation is one of the deterioration reactions of proteins in food, the importance of which is comparable to others such as Maillard, lipation, or protein‐phenol reactions. While research on protein oxidation has led to a precise understanding of the processes and consequences in physiological systems, knowledge about the specific effects of protein oxidation in food or the role of “oxidized” dietary protein for the human body is comparatively scarce. Food protein oxidation can occur during the whole processing axis, from primary production to intestinal digestion. The present review summarizes the current knowledge and mechanisms of food protein oxidation from a chemical, technological, and nutritional–physiological viewpoint and gives a comprehensive classification of the individual reactions. Different analytical approaches are compared, and the relationship between oxidation of food proteins and oxidative stress in vivo is critically evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.